Silence is not Golden: Disrupting the Load Balancing of Authoritative DNS Servers

<u>Fenglu Zhang</u>, Baojun Liu, Eihal Alowaisheq, Jianjun Chen, Chaoyi Lu, Linjian Song, Yong Ma, Ying Liu, Haixin Duan and Min Yang

The security of DNS is critical to Internet operation

- Domain Name System (DNS) is a cornerstone of Internet infrastructure.
- The outage of DNS can cause **severe** influence.

Several popular domains were unavailable in most regions in the US during the DDoS attack on Dyn in Oct 2016

Question

How about deploying **more machines** to defend against the DoS attack?

Requirement of load balancing from DNS specifications

To ensure security and robustness, DNS specifications **require load balancing mechanisms** on authoritative DNS servers:

RFC 1034

We REQUIRE every zone to **be available**

on at least two servers, and many zones

have more redundancy than that.

RFC 2182

Authoritative servers MUST **be placed at**

both topologically and geographically

dispersed locations.

DNS load balancing of mainstream vendors

Mainstream vendors of DNS services **support** load balancing mechanisms **complying with DNS specifications**.

What will happen if attackers

disrupt load balancing of authoritative **DNS servers**?

Security impacts of disrupting DNS load balancing

Impact 1: overloading authoritative DNS servers with legitimate traffic

Security impacts of disrupting DNS load balancing

Impact 2: disrupting DNS-based load balancing of

Security impacts of disrupting DNS load balancing

Impact 3: Lowering the bar of traffic hijacking and cache poisoning

Uncovered a new attack that disrupts the load balancing mechanism of authoritative DNS servers

Uncovered a new attack (Disablance) that disrupts the load balancing

mechanism of authoritative DNS servers

- Exploitable recursive DNS software
 - BIND9, PowerDNS, and Microsoft DNS

Uncovered a new attack (Disablance) that disrupts the load balancing

mechanism of authoritative DNS servers

- Exploitable recursive DNS software
 - BIND9, PowerDNS, and Microsoft DNS
- Exploitable domains
 - 22.24% of the top 1M SecRank FQDNs
 - 3.94% of the top 1M Tranco SLDs

Uncovered a new attack (Disablance) that disrupts the load balancing

mechanism of authoritative DNS servers

- Exploitable recursive DNS software
 - BIND9, PowerDNS, and Microsoft DNS
- Exploitable domains
 - 22.24% of the top 1M SecRank FQDNs
 - 3.94% of the top 1M Tranco SLDs
- Exploitable open resolvers
 - 37.88% of selected open resolvers
 - 10 popular public DNS services, including Cloudflare and Quad9

The Disablance Attack

"Silence is golden": a strategy of authoritative servers

Extensive authoritative servers are configured to **not respond** to DNS requests which are **outside of their authority**

"Silence is golden": a strategy of authoritative servers

Extensive authoritative servers are configured to **not respond** to DNS requests which are **outside of their authority**

While resolvers meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

While resolvers meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

While resolvers meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

While resolver meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

While resolver meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

While resolver meeting a "silent" authoritative server

- prefer an authoritative server with the best performance
- avoid an authoritative server failing to respond
- share the status of an authoritative server across all authoritative domains.

An example: Disablance Attack

• IP1 – IP4 are authoritative servers assigned by the vendor.

\$ dig hosted.com	m NS			
;; ADDITIONAL S	ECTIO	ON		
ns.hosted.com.	600	IN	А	IP1
ns.hosted.com.	600	ΙN	А	IP2
ns.hosted.com.	600	ΙN	А	IP3
ns.hosted.com.	600	IN	А	IP4

An example: Disablance Attack

- IP1 IP4 are authoritative servers assigned by the vendor.
- Attackers aim to redirect DNS traffic to IP1.
- attack.com is **not hosted** on the targeted authoritative server.

\$ dig hosted.com NS					\$ dig attack.com NS			
•••					•••			
;; ADDITIONAL S	ECTI	DN			;; ADDITIONAL SECTION			
ns.hosted.com.	600	ΙN	А	IP1				
ns.hosted.com.	600	ΙN	А	IP2	ns.attack.com. 600 IN A IP	2		
ns.hosted.com.	600	IN	А	IP3	ns.attack.com. 600 IN A IP	3		
ns.hosted.com.	600	IN	Α	IP4	ns.attack.com. 600 IN A IP	4		

An example: Disable	ance Att	\$ dig hosted.c ;; ADDITIONAL ns.hosted.com. ns.hosted.com. ns.hosted.com.	SECTION 600 IN A IP1 600 IN A IP2 600 IN A IP3 600 IN A IP3	<pre>\$ dig attack.com 1 ;; ADDITIONAL SEC ns.attack.com. 60 ns.attack.com. 60 ns.attack.com. 60</pre>	NS TION 00 IN A IP2 00 IN A IP3 00 IN A IP3
Attacker Several crafted DNS queries	candidat IP1 IP2 IP3 IP4	e priority 100 100 100 100	IN A IP IN A IP	P2 P3 P4	
		Authori	tative se	rvers	25

Legitimate **DNS traffic**

Users

candidate priority IP1 100 IP₂ IP3 IP4

Authoritative servers

***** 0 ο

•••••

A: IP4

ο ****** **A: IP3**

0

0

0 *****

Evaluating Exploitable Targets Part I: hosted domains, authoritative servers, and vendors

- Top 1M SecRank FQDNs
- Top 1M Tranco SLDs

For each targeted domain: Request their nameservers

Mark a nameserver as vulnerable when it:

- ignores queries for a domain that is not hosted
- provides responses for its hosted domain

Exploitable hosted domains

Our measurement started on May 12, 2022: 22.24% of the top 1M FQDNs and 3.94% of the top 1M SLDs are exploitable Distribution of affected domains

Тор	10	100	1K	10K	100K	1M
# FQDN	20%	29%	34.7%	26.9%	25.3%	22.2%
# SLD	10%	11%	6.8%	5.5%	4.6%	3.9%

Exploitable hosted domains

Our measurement started on May 12, 2022: 22.24% of the top 1M FQDNs and 3.94% of the top 1M SLDs are exploitable Distribution of affected domains

Тор	10	100	1K	10K	100K	1M
# FQDN	20%	29%	34.7%	26.9%	25.3%	22.2%
# SLD	10%	11%	6.8%	5.5%	4.6%	3.9%

Exploitable domains among the top 100 FQDNs:

- API for a mobile operating system
- Medical service
- E-commerce
- Short-form video applications

Exploitable authoritative servers and vendors

 11.73% of nameservers for the top 1M FQDNs and
 4.40% of nameservers for the top 1M SLDs are exploitable

Exploitable authoritative servers and vendors

- 11.73% of nameservers for the top 1M FQDNs and
 4.40% of nameservers for the top 1M SLDs are exploitable
- Tencent Cloud (DNSPod) hosted 6.26% of the top 1M FQDNs and 0.81% of the top 1M SLDs

Top 10 affected providers for the top sites

Тор	1M FQDN	Is	Top 1M SLDs			
Provider	Service ^a	# Hosting	Provider	Service ^a	# Hosting	
Tencent Cloud	Cloud	62,607	Tencent Cloud	Cloud	8,119	
WANGSU	Cloud	34,838	DNS.COM	Cloud	4,071	
DNS.COM	Cloud	9,949	WANGSU	Cloud	2,738	
GNAME	Domain	7,647	GNAME	Domain	1,645	
360	Cloud	2,212	Freenom	Domain	580	
SFN	Domain	1,920	Danesconames	Domain	390	
Baidu Cloud	Cloud	965	Baidu Cloud	Cloud	337	
22.cn	Cloud	843	XZ.com	Domain	250	
Na.wang	Cloud	623	22.cn	Cloud	226	
CNDNS	Cloud	345	Heteml	Cloud	218	
Total		222,370	Total		39,392	

Evaluating Exploitable Targets Part II: recursive DNS software, open resolvers and public recursive services

- BIND9
- Unbound
- PowerDNS
- Knot Resolver
- Microsoft DNS

Conducting software simulation covering all conditions affecting attacking efficiency

Result: software analysis

Three vulnerable software enjoys a high market share [1] are vulnerable

Market share: 60.2+%

Market share: 3.2+%

Market share: 2.5+%

The attacking efficiency is high

Example: after receiving one attacking query, BIND9 sent around
 5,730 legitimate queries to the targeted nameserver

[1] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten Holz. 2015. Going Wild: Large-Scale Classification of Open DNS Resolvers. In Proceedings of the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC '15). Association for Computing Machinery, New York, NY, USA, 355–368.

- 37,843 stable open resolvers
- 14 public DNS services

Simulate the attacker and benign clients to send queries

- established a set of vulnerable nameservers
- utilized our own domains

Result: exploitable open resolvers

Our measurement started on Dec 14, 2021:

- 14,372 (37.88%) of the tested open resolvers are vulnerable
- Distributed in 130 countries,
 2,821 cities, and 1,778 Ases

Result: exploitable public recursive services

Our measurement started on Dec 29, 2021:

- 45 of 100 IP addresses operated by 10 of 14 providers are exploitable
- The vulnerable vendors including Cloudflare, OneDNS, and Quad9

Discussion and Conclusion

Mitigation: fix from the side of authoritative servers

Root reason: authoritative servers dropping queries for non-authoritative

domains to protect against DNS amplification attacks.

RFC 8906: Failing to respond at all is always

incorrect.

Mitigation: fix from the side of authoritative servers

Root reason: authoritative servers dropping queries for non-authoritative

domains to protect against DNS amplification attacks.

RFC 8906: Failing to respond at all is always incorrect.

Recommendation: returning REFUSED with an EDNS error code

REFUSED does not generate more packets than attackers'

Disclosure and feedback

• Tencent Cloud, Amazon, and TSSNS have taken action to fix this issue

Novel attack. Uncovered a vulnerability to disrupt the DNS load balancing functionality

Comprehensive measurement. Systematically evaluated the realworld impact of the attack

Responsible disclosure. Responsibly disclosed issues to vendors with mitigation options

Silence is not Golden: Disrupting the Load Balancing of Authoritative DNS Servers

<u>Fenglu Zhang</u>, Baojun Liu, Eihal Alowaisheq, Jianjun Chen, Chaoyi Lu, Linjian Song, Yong Ma, Ying Liu, Haixin Duan and Min Yang

zfl23@mails.tsinghua.edu.cn